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Abstract: McKelvey and Schwartz (2004, this issue) propose that the number of markers used to assign individual
identity in DNA-based population inventories should be doubled or tripled relative to established practice, pri-
marily to facilitate indirect statistical tests for genotyping errors. If applied to studies that use plucked hair samples,
this suggestion would cause a proportional increase in the effort required to generate results, and an even greater
increase in the number of errors initially present in those results. Since no empirical or deductive evidence was
presented to show how established methods of selective reanalysis can fail to detect errors, I conclude that this pro-
posal would dramatically increase costs without improving data quality. While the optimal number of markers will
vary between study populations, I present 1 example in which identical results would have been achieved with 3
markers or with the 15 suggested by McKelvey and Schwartz (2004).
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Any study that uses genetic analysis to establish
individual identity, whether in the context of
human forensics or capture–mark–recapture
(CMR) abundance estimation, is vulnerable to a
type of error that occurs when separate samples
from the same individual are recorded as having
different genotypes. Since each unique genotype
is assumed to correspond to a different individ-
ual, this error causes an excess of individuals to
be recognized (Taberlet et al. 1996). For genetic
CMR capture studies to be practical in large-scale
applications, one must identify highly efficient
methods that can achieve an uncompromising
standard of data quality.

Reasoning that inconsistent genotyping would
create very similar pairs of genotypes, Woods et
al. (1999) selectively reanalyzed the mismatched
markers in pairs of genotypes that matched at 5
of the 6 markers used in their study (1MM-pairs).
More recently, I extended this selective reanalysis
protocol to include certain 2MM-pairs (pairs of
genotypes that match at all but 2 of the markers
being analyzed; Paetkau 2003). I recommended
reanalyzing 3MM-pairs in rare cases in which a
particular genotype is unreplicated (observed in
just 1 sample) and differs from a second geno-
type in a manner consistent with “allelic dropout”
(a phenomenon in which just 1 allele is detected
for a heterozygous gentoype; Taberlet et al. 1996,
Gagneux et al. 1997). In situations where allelic
dropout is suspected but where the reanalysis
confirms the original (suspect) data, I now repeat
the reanalysis up to 7 times, although clear evi-

dence of both alleles usually is obtained by the
second or third analysis.

This protocol is most efficient if stringent
thresholds are used when scoring the initial
genotypes and is therefore well suited to working
with relatively high-quality DNA samples like
plucked hair. Repeated wholesale reanalysis of
every genotype (the “multiple tubes” approach;
Taberlet et al. 1996) may be more appropriate
when working with scat samples, in which con-
centrations of DNA are relatively low but much
sample material is available. I will restrict this dis-
cussion to the plucked-hair samples that are most
commonly used in non-invasive CMR studies.

I used the expanded version of selective
reanalysis (Paetkau 2003) to scrutinize data from
68 studies that used plucked hairs and 5–7 genet-
ic markers to identify individuals from 9 species
of carnivores (lynx [Lynx canadensis], ocelot
[Leopardus pardalis], pine marten [Martes ameri-
cana; Mowat and Paetkau 2002], wolverine [Gulo
gulo], fisher [M. pennanti], badger [Taxidea
taxus], brown bear [Ursus arctos; Poole et al. 2001,
Boulanger et al. 2003], black bear [U. americanus;
Mowat et al. 2004], and sun bear [U. malayanus]).
In 17 studies where detailed records were pub-
lished, this protocol identified 210 samples that
had 1 error in their initial genotype, and 16 sam-
ples with 2-locus errors (Paetkau 2003). The
trend in these data suggests that reanalysis of
>3MM-pairs is not necessary to detect every error
that is initially present in most studies.

This logic is independent of the number of
markers used. To take extreme examples, a study
that made use of a single marker would have to
be reanalyzed in its entirety under this protocol1 E-mail: dpaetkau@wildlifegenetics.ca
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(each distinct genotype would be a 1MM relative
to every other genotype), whereas reanalysis
would be extremely efficient in a study that used
20 markers (the only 1MM-, 2MM-, or 3MM-pairs
would be those caused by errors; McKelvey and
Schwartz 2004). Ignoring the fact that the single-
locus project would have absurdly high match
probabilities and would grossly underestimate
the number of individuals sampled, the differ-
ence between the single-locus project and the 20-
locus project is in the amount of effort that gets
“wasted” confirming similar pairs of genotypes
that represent different individuals rather than
errors. The capacity of the selective reanalysis to
detect and correct every error is the same in both
studies because all of the inaccurate genotypes
would be reanalyzed. In short, the efficiency and
not the efficacy of the selective reanalysis
approach is affected by altering the number of
markers. This focuses the discussion on the num-
ber of markers required to maximize efficiency.

The total amount of work required to complete
a project using my protocol (Paetkau 2003) is the
sum of the first pass (a relatively efficient process
in which every sample is analyzed at every marker)
and the error checking (a less efficient process in
which selected single-locus genotypes are reana-
lyzed to confirm the differences between similar
pairs of genotypes). The number of pairs of geno-
types that will fall subject to selective reanalysis is
the number of initial errors in genotypes plus the

number of pairs of individuals that have similar
genotypes by chance. While the work required to
complete the first pass increases linearly with the
number of markers, the 2 factors that make selec-
tive reanalysis necessary respond in opposite
directions to changes in the number of markers.

Two reasons explain why the number of initial
errors increases with the number of markers. First,
each data point that is recorded has an associated
probability of error, so increasing the number of
markers that are analyzed will increase the total
number of errors (Waits and Leberg 2000). Sec-
ond, the probability that 1 (allelic dropout) or both
(outright failure) chromosomes will fail to amplify
from a sample is dependent on the amount of
DNA that goes into each polymerase chain reac-
tion (PCR; Taberlet et al. 1996). When using finite
samples, minimizing the total number of reactions
(i.e., markers) allows more DNA to be used in each
individual reaction, increasing the probability of
observing a result and lowering the probability
that this result will be inaccurate (Paetkau 2003).

The frequency of pairs of individuals with simi-
lar genotypes is determined by the number and
variability of the markers that are analyzed. This
frequency cannot be predicted using match sta-
tistics or simulations because it depends on the
distribution of degrees of relatedness among the
sampled individuals; a distribution which is not
only unknown, but which varies considerably
with the size and degree of isolation of the study
population. Knowledge of the number and vari-
ability of markers can provide preliminary insight
into the frequency of similar genotypes (Paetkau
2003: Fig. 1), but demographic isolation in small
populations can lead to unexpectedly high fre-
quencies of similar genotypes (D. Paetkau, un-
published observation).

I will use a recent brown bear study from the
Yukon Territory, Canada (R. Maraj, University of
Calgary, unpublished data), to illustrate the influ-
ence of these factors on efficiency and data qual-
ity. This study used 6 markers to analyze 370 hair
samples, of which 335 produced sufficient data
(solid genotypes for at least 5 markers, as judged
by 2 experienced technicians) to allow assign-
ment to 58 unique genotypes (i.e., individuals). A
convenient feature of this study is that we have
great confidence in the number of individuals
identified; since 2MM-pairs are expected to out-
number 0MM-pairs (errors in which 2 individuals
have identical multilocus genotypes) by a factor
of approximately 100 (Paetkau 2003), the
absence of 2MM-pairs in this study (Fig. 1)

Fig. 1. Mismatch distributions for a 6-locus Yukon brown bear
file before (�) and after (�) selective reanalysis (frequency =
number of pairs of genotypes with a given number of mis-
matching markers [MM] divided by the total number of pairs).
The distribution was bimodal until selective reanalysis showed
that all 16 1MM-pairs and 3 2MM-pairs were caused by errors.
One genotype was even shown to have been affected by allel-
ic dropout at 3 markers.The final distribution, in which all pairs
of genotypes differed at ≥3 markers, conforms to the steeply
sloped unimodal shape observed when analyzing tissue sam-
ples from known individuals (Paetkau 2003).



J. Wildl. Manage. 68(3):2004 451RESPONSE TO MCKELVEY AND SCHWARTZ •  Paetkau

assures us that the number of individuals repre-
sented by the 335 samples was no greater than 58
(i.e., no 0MM-pairs).

I reanalyzed the Yukon file to see how much
work would have been required at each phase of
analysis if fewer markers had been used. I started
with the most variable marker and added mark-
ers in order of descending variability (Fig. 2).
The number of individuals identified would have
been the same whether 3, 6, or (presumably) 15
markers were used. The total number of single-
locus analyses required to achieve an accurate,
finalized results file ranged from 1,173 (3 mark-
ers × 370 samples + 63 reanalyses) to over 5,600
(15 markers). The number of reanalyses would
have been minimized (at 23 reactions) by the use
of 4–6 markers, going up if the number of mark-
ers was either decreased (causing more chance
similarities between individuals) or increased
(causing more errors in initial genotypes).

The mismatch distribution for the Yukon study
was strongly bimodal prior to selective reanalysis
(Fig. 1). This is a convenient feature for illustra-
tion, or for statistical testing (McKelvey and
Schwartz 2004), but it is not a precondition to
detecting and correcting errors. Indeed, retro-
spective comparisons of what the results would
have looked like using 4, 5, or 6 markers (Fig. 2)
clearly illustrates that the use of 6 markers was
overly conservative. One could even argue that the
quality of the final estimate of abundance would
have been improved had extra effort been direct-
ed toward increasing sample size—and thus preci-
sion—rather than toward the collection of genetic
data from more markers than necessary. Such
criticism must be tempered for 3 reasons: (1) the
actual performance of a marker system can be
evaluated only in retrospect, (2) erring on the
side of excess power is preferred to the alterna-
tive, and (3) the use of too few markers removes
the margin of comfort that allows samples to be
retained when they are missing data for 1 marker.
I would feel comfortable repeating this study with
5 markers but not with 4. The suggestion that 15
markers should have been used in this study
(McKelvey and Schwartz 2004) is preposterous.

While I consider direct testing of data repro-
ducibility through reanalysis of specified pairs of
genotypes (Paetkau 2003) to be a more produc-
tive activity than indirect statistical scrutiny of
preliminary mismatch distributions (McKelvey
and Schwartz 2004), the mismatch distribution
for a finalized dataset is an invaluable tool for
defending a project. As long as 1MM-pairs are

rare or absent, and the similar pairs of genotypes
that are likely to include errors have been repli-
cated according to formal guidelines, critics can
find no logical basis to suspect either source of
error to which DNA-based CMR studies are
uniquely vulnerable; both insufficiently variable
marker systems and genotyping error are expect-
ed to produce 1MM-pairs.

The other support that is required to defend
results is data images showing clear replications
of each genotype underlying each 1MM- and
2MM-pair remaining in the final dataset. This
replication can be through reanalysis or through
the observation of identical multilocus genotypes
in independent samples. For example, 312 of the
335 samples that were assigned to individuals in
the Yukon project had multilocus genotypes that
were replicated in at least 1 other sample. Field
biologists should not view a lack of training in
genetics as a reason to avoid raw data; good data
images will be self-explanatory to any audience,
and nothing will ensure conservative lab work
like the knowledge that one’s raw data may be
scrutinized by others.

A remarkable chasm separates the positive out-
comes that have been experienced in scores of
applied DNA-based population studies (e.g.,
Sloane et al. 2000), most of which can no longer
be published due to a lack of novelty, and the ever-

Fig. 2. Effect of changing the number of markers in a Yukon
brown bear study that was originally analyzed using 6 mark-
ers. The number of unique genotypes (�) is lower than the
presumed number of individuals (58) when using 1 or 2 mark-
ers, but stabilizes thereafter. The minimum number of reanaly-
ses—under the conservative assumption that each error is
detected and corrected with a single polymerase chain reac-
tion—is the number of errors detected (�) plus the number of
reanalyses required as a result of different individuals having
genotypes that are similar enough to meet criteria for reanaly-
sis (5; Paetkau 2003). The number of errors detected is taken
from actual records for the first 6 markers, and then increased
proportionally thereafter. This ignores the increase in error
that would result from using less DNA per reaction as the
number of markers increases.
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expanding cautionary commentary that domi-
nates the literature, replete with dramatic bylines
like “promise and pitfalls” (Mills et al. 2000), “cau-
tions and guidelines” (Waits et al. 2001), and
“look before you leap” (Taberlet et al. 1999).
Unfortunately, the suggestions of McKelvey and
Schwartz (2004) only serve to widen this gap,
offering no demonstrable benefit over estab-
lished methods at a cost that would threaten the
practical utility of a well-established technique. In
most studies of outbred populations, existing, sci-
entifically rigorous data-replication protocols
should achieve perfect accuracy of individual
assignments using between 5 and 7 markers.
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